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Abstract— In this paper we investigate the use of Model Predic-
tive control for Markov Decision Processes under weak assump-
tions. We provide conditions for stability based on optimality of
a specific class of cost functions. These results are useful from
both a theoretical and computational perspective. When nonlinear
non-Gaussian models for general state spaces are considered, the
absence of analytical tools makes the use of simulation based
methods necessary. Popular simulation based methods like stochas-
tic programming and Markov Chain Monte Carlo can be used to
provide open loop estimates of the optimisers. With this in mind
we provide conditions under which such an approach would yield
stable Markov Decision Processes.

I. INTRODUCTION

We will consider discrete time Markov Decision Processes
(MDP) defined on general state spaces; see [7] for a book
length review. From a probabilistic perspective MDPs are
no more than a special class of Markov Chains and can
be analysed using standard results from Markov chains
theory [16]. In this paper we are interested in investigating
a pragmatic class of sub-optimal policies, namely Model
Predictive Control (MPC) [12], [21] also known as MDPs
with a rolling horizon strategy [1], [11], [23]. We aim to
examine the stability properties based on appropriate per-
formance criteria without invoking unnecessarily restrictive
assumptions commonly employed, such as finite [1], [11] or
countable [23] state spaces, bounded stage costs [8], linear
dynamics [5], [20][5], [20] or Gaussian noise sequences [2].

Following earlier work in the field, MPC can be interpreted
as an approximate Value Iteration Algorithm (VIA) [3], [4],
[8], [10] where the infinite horizon cost to go is approximated
by a finite horizon truncation. Much theoretical analysis
comparing MPC with optimal VIA has appeared in parallel
to that for deterministic non-linear MPC (for example see
[18], [22]). In particular we refer the reader to [1], [11] for
finite state spaces, [23] for countable ones and [8], [10] for
general (measurable) state spaces. Recently the interest for
stochastic MPC has been renewed. In [6] the results of [8]
have been extended for problems involving the hitting and
return times of some recurrent target set. In addition, in [2]
MPC is treated as a particular value iteration algorithm that
is implemented online, i.e. in real time or closed loop as it is
commonly referred to in automatic control terminology. The
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author considers a specific class of problems where certainty
equivalence holds.

For a detailed probabilistic analysis of the Markov chains
resulting from policies computed by value and policy itera-
tion algorithms in general state spaces we refer the reader to
[15] and the references therein. In [15] the author summarises
necessary stability and ergodicity assumptions required to
analyse algorithms based on VIA using Lyapunov based tools
such as drift conditions and the Poisson equation [17]. We
will build on that framework to analyse stochastic MPC. We
will consider problems where the aim is to drive the state to
a specified compact target set [6]. Then using an appropriate
cost formulation and assumptions similar to those found in
[2], [22] one can asymptotically drive the controlled process
to the target set almost surely via a sequence of nested level
sets. We will see that in this sense MPC retains similar strong
stability properties found in deterministic control settings
[21], [12] and we will provide a discussion of how our results
relate to the ones found in the literature.

It is clear that in most cases these problems cannot
be computed analytically, so there is a need to employ
numerical or simulation based methods for the underlying
minimisations. This motivates much of the framework used
as we are interested eventually to examine performance
and stability when simulation based stochastic optimisation
methods are employed. When simulation based methods
are used for an open loop problem, MPC can generate
feedback policies that are very easy to implement. In the
stochastic programming literature some methods have been
proposed that can find, in a known finite-number of steps,
a solution to expected value criterion optimisation within
the desired level of approximation and a desired confidence,
while using a finite number of simulations [24], [19], [25].
These types of algorithms with probabilistic guarantees have
recently been extended to include the family of Markov
Chain Monte Carlo (MCMC) algorithms in [13], [14]. These
guarantees provide quantitative and formal description of the
behaviour of the numerical approximations resulting from
different algorithms using simulation. Therefore we aim to
show how this behaviour is extended when used in closed
loop under appropriate MPC policies. This can provide
practitioners good qualitative insight when selecting stage
costs, computational resources and tools.

A. Notation

We will be using the following notation: for any scalars or
vector ai we denote a1:n−1 = (a1, . . . , an−1). Let (Ω,F ,P)
be a probability space. We will denote the state space as



X, X the countably generated Borel sigma algebra on X,
B the space of Borel measureable functions and P(X) the
set of probability measures on (X,X ). Let also dx be the
infinitesimal neighbourhood of x ∈ X, IA(x) the indicator
function on set A ∈ X and δa(dx) the Dirac delta measure
centered at x = a. Let also L∞ = L∞(Ω,F ,P) be the
the set of measurable functions f with finite L∞-norm
‖f‖∞ = inf {λ : |f |≤λ}. A function f is called norm like
if the level set Zη = {x : f(x) ≤ η} is pre-compact
for each η > 0 and f(x) → ∞ as |x| → ∞. For
A ∈ X we will denote P (x,A) to be a Markov probability
transition kernel and define the semigroup’s n-fold iterates
Pn(x,A) =

´
P (x, dy)Pn−1(y,A) with P 1 = P . A kernel

P (or Pn resp.) is called weakly Feller when Pf ∈ L∞ (or
Pnf ∈ L∞ resp.) for f ∈ L∞. Also define the resolvent
kernel for δ ∈ (0, 1) to be Kδ = (1− δ)

∑
n≥1 δ

nPn

and the drift of the Markov chain as ∆V = PV − V .
For a probability measure µ ∈ P(X) and a measureable
function f , let supp(µ) = {x : µ(x) > 0} (and similarly
for f ,) µ(f) =

´
f(x)µ(dx), µP{A} =

´
µ(dx)P (x,A)

and P (f) (x) =
´
P (x, dy)f(y). In addition a set Z is

called petite for some probability measure v ∈ P(X) and
some constant δ > 0 if for any x ∈ Z, Y ∈ X we have
P (x, Y ) ≥ δν(Y ).

II. PROBLEM FORMULATION

Let {Xn}n≥0 be a perfectly observed (X,X ) measurable
Markov chain, X0 ∼ υ such that at time step n,

P(Xn ∈ dxn | X0:n−1 = x0:n−1, A1:n−1 = a1:n−1)

= Pan(xn−1, dxn),

where Pan(xn−1, dxn) is a weakly Feller probability transi-
tion kernel depending each time n on the exogenous control
or action input an ∈ A. Associated with each state x ∈ X is
a compact non empty subset A(x) ⊆ A, whose elements are
admissible actions or controls when the state Xn−1 takes
x as its realisation. In this and the following sections we
will consider the class of admissible non-randomised Markov
policy functions πn : X → A such that an = πn(xn−1) ∈
A(xn−1). A sequence of functions π = {πn}n≥0 is usually
referred as policy or feedback law. Note in this case we
consider policies where the previous observed state xn−1 can
summarise all the necessary information about the chain’s
previous history a1:n−1, x0:n−1. In this and the following
sections we restrict the treatment to non-randomised settings.
This is without loss of generality, as we can replace the image
set with P(A(x)), the set of probability measures on A(x),
and obtain a kernel for the action as for the state while still
having a valid MDP. We will put this modification in use
later in Section IV.

A. Open loop optimal control for non stationary problems

In order to measure the performance of an admissible
policy, at each time n with xn−1 = x, we define suitable
measurable non-negative stage cost functions gn : X×A→

R+and the expected m-stage finite horizon cost as

Jn,m(x, an:n+m−1) := Ex

[
n+m−1∑
k=n

gk(Xk, ak)

]

=

ˆ [n+m−1∑
k=n

gk(xk, ak)

]
n+m−1∏
k=n

Pak(xk−1, dxk)δx(dxn−1)

=

n+m−1∑
k=n

ˆ
gk(xk, ak)

k∏
l=n

Pal(xl−1, dxl)δx(dxn−1)

=

n+m−1∑
k=n

P k−n+1
an:k

(gk) (x).

Note that by assuming measureability with respect to gk we
are allowed to interchange the integral and summation opera-
tor1. Also the subscript on the k−n+1-order kernel P k−n+1

denotes its explicit dependence on the prior sequence of
actions an:k.

An m-stage open loop policy (or equivalently control law)
πn,m(x) is a policy such that at time n one computes a
sequence of controls a′n:n+m−1 , which are meant to be
applied successively regardless of the observations of the
subsequent states. The optimal m state open-loop sequence
policy at time n is denoted as π∗n,m(x) := a∗n:n+m−1 where

π∗n,m(x) := arg min
an:n+m−1∈A(x)n−m+1

Jn,m(x, an:n+m−1).

(1)
and the associated open loop optimal cost as J∗n,m(x) =
Jn,m(x, a∗n:n+m−1).

The Bellman equation for the finite horizon problem is
given by

J∗n,m(x) = min
a∈A(x)

[
Pa
(
gn + J∗n+1,m−1

)
(x)
]
, (2)

the associated dynamic programming operator Tn :B → B
on an arbitrary Pa(x, ·)-measurable function S(x) is defined
at time n as

TnS(x) = min
a∈A(x)

[Pa (gn + S) (x)] , (3)

and similarly we also define for a policy function πn(xn−1)
the value function operator

Tnπn
S(x) = Pπn (gn + S) (x).

We also adopt the notation T∞ = limn→∞ T 1 · · ·Tn−1TnS
and similarly Tπ = limn→∞ T 1

π1
· · ·Tnπn

S.
In an infinite horizon setting the optimal control prob-

lem consists of minimising J1,∞(x), where the state starts
initially at an arbitrary x ∈ X. Naturally, we have to
assume that at least when the optimal open loop controls
are used, the minimised cost is well defined in the sense
that

∑
k≥n gk(xk, a

∗
k) is P ka∗1:k -measureable for every k ≥ 1

including the infinite horizon case:
Assumption 1: (A1 Regularity of minima) Suppose for all
|x| <∞ the underlying minimisation in TnJ∗n+1,∞(x) exists
for all n with the open loop minimiser being π∗n and

J∗1,∞(x) = T 1J∗2,∞(x) <∞. (4)

1This a direct application of the Lebesgue monotone convergence theorem



Clearly, this assumption is necessary in most realistic con-
texts.

We start by observing that (A1) implies
Pnπ∗1,∞(n) (gn) (x)

n→∞−→ 0. We proceed by presenting a
useful lemma that reveals how in some settings a finite
infinite horizon cost can imply at least asymptotic stability.
We then show an example with some conditions for the
transition kernel Pa and the sequence {gn}n≥1 that are
sufficient for Assumption (A1) to hold.

Lemma 1: We have gn(Xn, a
∗
n)

n→∞−→ 0 Pna∗1:n - a.s..
Proof: Proof follows from direct application of the

Borel Cantelli lemma. Consider the sequence of measures{
φn := Pna∗1:n(x,B)

}
n≥1

and the sequence of sets Bn =

{x ∈ X : gn(x, a∗n) > ε} where ε > 0. Using φn as
the law of xn,

∑
n≥1 Px(Bn) =

∑
n≥1 φn(Bn). From the

Chebyshev’s inequality we have φn(Bn) ≤ 1
εφn(gn) and

therefore
∑
n≥1 Px(Bn) < ∞. Using the Borel Cantelli

lemma we conclude Px(Bn i.o. ) = Px(∩
n
∪

m≥n
Bn) = 0

and therefore gn(Xn, a
∗
n)→ 0 φn- a.s..

Corollary 1: Assume φn → φ. Suppose there exists a
petite set K ⊂ X such that the system can be kept in K
at no cost with some control sequence if it enters K; that is
gn = 1Kcn+1Kcqn with lim infn→∞ qn = q and q > ε > 0,
being φ−measurable and continuous. supp gn ∩ suppφ 6= ∅
and there exists a

′ ∈ A(x) such that cn(x, a
′
) = 0. Then

under the open-loop controls a∗0:∞ the controlled Markov
chain satisfies

Px(Xn /∈ K i.o.) = 0 (5)
Example 1: For this example suppose that {gn}n≥1 are

strictly positive. One may achieve (A1) by setting

sup
x∈X,a∈A(x)

(∣∣∣∣gk+1(x, a)

gk(x, a)

∣∣∣∣) = γk < 1 with γ̃ = sup
k
γk < 1

and then requiring
∑
k≥1 γ̃

kP kπ∗ (g1) (x) =

(1− γ̃)
−1
Kγ̃ (g1) (x) < ∞ for every |x| < ∞. Since

the integral of g1 with the resolvent kernel is finite we
recover standard regularity results for uncontrolled Markov
chains [16]. In this example we place the requirement that
the optimally controlled Markov chain is g1-regular, in
addition to ψ-irreducible and positive recurrent. This is a
strong stability assumption and simply requiring the process
to be Feller would not be adequate. In terms of stochastic
stability and Lyapunov functions, a necessary and sufficient
drift condition would be that for g1 : X× A→ [1,∞] there
exists a petite or compact set C, constant b < ∞ and a
non negative extended real valued function V such that for
some x′, V (x′) < ∞, and so that the following holds for
every x ∈ X:

∆V (x) ≤ −g1(x, a′) + bIC(x).

If g1 is norm-like then it is enough to verify this for Pa′ and
C = {x : g1(x, a′) ≤ z}, where a′ ∈ A(x) and |z| <∞ are
arbitrary.

Remark 1: The usual cost conventions for the infinite
horizon are to use a discounted cost or an average cost [3],
[4], [7]. Relating to the previous example in the first case

we would have γi = γj = γ̃ for all i, j and in the second
case we would have to use γk = 1 for all k. Note that the
previous discussion is still relevant as regularity and Feller
assumptions need to be imposed for the same reasons [15]
since we would need 1

nP
n
π (g) (x)

n→∞−→ 0 with g being the
one stage cost all the time.

B. Level sets based cost formulation

The exposition so far has adopted a nonstationary cost
framework. This has the crucial limitation that one cannot
derive a stationary dynamic programming operator, say T ,
which generates the optimal value function as the fixed point
of the equation TJ∗ = J∗. This is a standard formulation
in the literature and the equation appears under the name
of average or discounted cost optimality equation according
to which cost formulation is used [4]. Conditions under
which recursive algorithms converge to such a fixed point
are standard and extremely valuable [4], [9], [15]. The main
reason for abandoning such a classical stationary setup is
that we are primarily interested in driving the process to a
desired compact target set. In contrast to [6] we will assume
that this can be done via a sequence of intermediate level
sets, for each of which time varying stage costs are used
to penalise deviation from the level set. In this setup we no
longer possess the stochastic shortest path formulation of [2]
since in principle the penalty for deviating from the level sets
can be made harsher as we get closer to the target set.

Our work is motivated from problems where we wish to
drive the state to a compact target set K via a sequence
of intermediate level sets Ki. Suppose one can construct a
sequence of nested sets

K ⊂ . . . ⊂ Kn ⊂ . . . ⊂ K2 ⊂ K1 ⊂ X, (6)
where Ki={x : V (x) ≤ zi}and z1 > z2 > . . . > zn

with V being an arbitrary norm-like potential fuction. In
the spirit of Corollary1 we will focus our attention on cost
functions of the form gn = 1Kncn+1Kc

n
qn with each qn, cn

norm-like, bounded below by γ−1
n V and above by γnV for

γn ∈ (1,∞), and such that qn(x′) = cn(x′) when x′ lies
on the boundary of Kn to ensure continuity of gn. As in
Corollary 1 we minimise the infinite horizon problem with
the objective being to drive the state eventually to the target
set K via a sequence of intermediate level sets. We formalise
this setup with the following assumption:

Assumption 2: (A2 Level sets construction) Assume that
V (x) is a normlike potential function and set gn = 1Kncn+
1Kc

n
qn, with Ki as in (6), qn(x′, a) = cn(x′, a) when x′ ∈

∂Kn, lim infn→∞ cn = 0, lim infn→∞ qn = ε > 0, and for
each n there exist γn ∈ (1,∞) such that γ−1

n V ≤ gn ≤ γnV
with lim supn→∞ γn ≥ 1.

Note that a different cost is used inside the level set
than that outside. An analogous dual mode construction has
appeared in a deterministic control setting in [18] where the
authors assume that the process follows a particular policy
inside the target set and a MPC policy is used to force the
process to return when the process escapes the target set.



In our formulation the policy is defined by minimising a
different cost inside and outside the level sets.

C. Ideal closed loop optimal control and Model Predictive
Control

Applying an open loop solution of control sequences
has the obvious disadvantage that it does not take into
account that future observations of Xn will become available.
Nevertheless an open loop solution can be still used as a
base policy in conjunction with dynamic programming [3].
We will refer to the closed loop policy or feedback law being
a policy that uses the realised observations of the process.
Clearly any Markov policy as described earlier consists of a
closed loop policy.

Assuming it is possible and that the minimisers exist,
ideally one may wish to implement a feedback strategy to
solve TnJ∗n+1,∞ for every n. We will denote this ideal
Markov policy as πCL = {π∗n,∞ (xn−1) (1)}n≥1 where
π∗n,∞ (x) (1) = arg mina∈A(x)

[
Pa
(
gn + J∗n+1,∞

)
(x)
]
.

Even in the ideal case where this is possible, an important
requirement that (2) can be solved for every n, which is
indeed assumed in (A1). Clearly this ideal feedback policy
is in most cases very hard if not impossible to implement.
Instead we shall resort to MPC and treat the corresponding
value function as a truncated approximation of the ideal
one. Assuming at time n we have observed the previous
state to be xn−1, an MPC or receding horizon policy uses
only the first element of the computed open loop control
sequence, i.e. a?n = π∗n,h (xn−1) (1). After a?n is applied
and xn is observed the procedure is repeated. For a fixed
lookahead horizon an MPC policy can be written as πMPC =
{π∗n,h (xn−1) (1)}n≥1. Note that this will be a stationary
policy if the prediction horizon h remains the same at each
n.

We will impose that the additional assumption holds:
Assumption 3: (A3 Foster-Lyapunov condition) Assume

the following drift condition holds for the potential V such
that for each n and some a = π∗n,h (x) (1) with (possibly
large) h > 1,

PaV (x) ≤ λV (x) (7)

where λ ∈ (0, 1)
This is in fact a uniform ergodicity assumption [16], which
also implies the existence of a unique invariant measure φ.
The assumption is quite strong, but seems to be common
when working with non-stationary or unbounded costs [4],
[9], [10], [15]. Note that since Pa is weakly Feller and V
norm-like equation (7) and Assumption A3 can be in practice
verified only in compact state spaces, where the existence of
a positive probability density function is imposed, otherwise
one should can relax (A3) and require the same condition
for an appropriate resolvent Kδ instead (see [8], [10], [15].)

To determine stochastic stability of iterative schemes based
on VIA ideas, such as MPC, we intend to show that
these iterative algorithms are stable in the sense that they
yield a finite cost at the infinite time horizon. Then by
a straightforward application of (7) the resulting Markov

chain will be V - regular or geometrically regular [16], [17].
In this sense we are no longer interested in investigating
how the resulting suboptimal cost compares to the optimal
infinite horizon cost as done in [6], [8], [10]. This motivates
further discarding stationary value iteration schemes as the
objective is not to assert whether a recursive algorithm based
on VIA for stationary problems will converge to a (possibly
unique) optimal solution as in [4], [6], [8], [10], [15]. Instead,
the particular choice of cost ensures that when the total
accumulated infinite horizon cost of the Markov chain is
finite, then the process will asymptotically reach the target
set almost surely.

III. MODEL PREDICTIVE CONTROL AND STOCHASTIC
STABILITY

We summarise the algorithm to generate the MPC policy
πMPC = {π∗n,h (xn−1) (1)}n≥1 = {a?n}n≥1as follows:
• Initialise x0. For n ≥ 1

– Compute π∗n,h(xn−1), J∗n,h(xn−1) such that
Jn,h(xn−1, π

∗
n,h(xn−1)) = Tn · · ·Tn+h−10.

– Return a?n = π∗n,h (xn−1) (1) and sample xn ∼
Pa?n(xn−1, ·)

At each time n,

Vn(x) =

n+h−1∑
k=n+1

P k−n+1
π∗n,h(1),...,π∗n,h(k) (gk) (xn−1)

will act as the value function approximation2 of
Pπ∗n,∞(1)J

∗
n+1,∞(xn) resulting from the truncation due

to the prediction horizon. The feedback policy is generated
by repeatedly computing an optimal finite horizon problem
in a receding horizon manner. As with the open loop case,
we will denote the expected j-stage closed-loop cost as

J?n,m,j(x) := Ex

[
n+j−1∑
k=n

gk(Xk, a
?
k)

]
, (8)

where the process starts from state x and the closed loop
action sequence is given by {a?n}n≥1.

In the remainder of this section we will list some basic
results concerning the asymptotic stability of stochastic MPC
for the given model. The results are novel and can be viewed
as an extension of the deterministic counterparts found in
[2], [22] for Markov chains defined on general state spaces.
Compared to related results of [6] we use of unbounded
costs and present the analysis of MPC as a forward only
approximate dynamic programming implementation. Also
we do not restrict gn to be in some sense strictly decreasing.
Instead we allow some oscillation and assume that the
particular MPC prediction horizon naturally selects a non
increasing sub-sequence for Pha∗n:n+h

(gn+h). In detail, we
pose the following assumption:

Assumption 4: Assume at least one of the following is
true:

2In the subscript of the k−n-fold kernel we use the convention that for
k = 1 then π∗

n,h(1), . . . , π
∗
n,h(k) is simply π∗

n,h(1).



i) There exist h such that for every n and x with |V (x)| <
∞ the following holds

J∗n,h(x) ≤ J∗n,h−1(x) + bn, (9)

where
∑
n≥1 bn <∞.

ii) There exist h and δ ∈ (0, 1) such that for every n and
x with |V (x)| <∞ we have:

min
a∈A(x)

Phπ∗n,h
Pa (gn+h) (x) ≤ δPπ∗n,h(1) (gn) (x)

where the minimisation is supposed to exist when π∗n,h is
the sequence of actions to minimise Jn.h as in (1).

Proposition 1: If Assumptions (A1-4) hold, then for every
n and x with |V (x)| <∞ we have:

J?n,h,∞(x) <∞. (10)
Proof: We will split the proof in two parts showing (A1-

3) and Assumption 4 i) (and ii) respectively) ⇒ Proposition
1.

Part i): At time n consider the Bellman’s optimality
condition (2) for

J∗n,h(x′) = Pa∗gn(x′) + Pa∗J
∗
n+1,h−1(x′),

where a∗ = π∗n,h(1). Using (9) we get

J∗n,h(x′) ≥ Pa∗gn(x′) + Pa∗J
∗
n+1,h(x′)− bn+1,

and by integrating both sides with the law of the path of the
chain up to time n, Ln−1(x, x′) = Pn−1

a?1:n−1
(x, x′) we get

Ln−1Pa∗ (gn) (x) ≤ Ln−1

(
J∗n,h − Pa∗

(
J∗n+1,h

))
(x)+bn+1.

We may omit the initial condition x without confusion and
consider the telescopic sum for every n:∑

n≥1

Ln−1Pa∗ (gn) ≤
∑
n≥1

Ln−1

(
J∗n,h − Pa∗

(
J∗n+1,h

))
(11)

+
∑
n≥1

bn.

For the lhs term we identify
∑
n≥1 Ln−1Pa∗ (gn) =

J?n,h,∞(x) and for first term of the rhs we use (A3) to
construct the following bounds

J∗n,h(x′) ≤ V (x′)

n+h−1∑
k=n

γkλ
k−n+1 (12)

and hence ∑
n≥1

Ln−1J
∗
n,h(x) ≤ V (x)Cn

where Cn =
∑
n≥1 λ

n
∑n+h−1
k=n γkλ

k−n+1 <∞. Given the
each term in the telescopic sum is converging in the set
defined by V (x) <∞ we can use appropriate cancellations
in (11) to get∑

n≥1

Ln−1

(
J∗n,h − Pa∗

(
J∗n+1,h

))
≤ J∗1,∞ <∞. (13)

For the second term in the rhs (11) we clearly have∑
n≥1 bn+1 <∞ and therefore reach the desired result.

Part ii): This time at time n+1 we construct a policy com-
prised of the last h−1 elements of π∗n,h followed by a specific

action α̌, i.e. we let π̃n+1 =
(
π∗n,h(2), . . . , π∗n,h(h), α̌

)
and a∗ = π∗n,h(1). We specifically choose α̌ =

arg mina∈A(x) P
h
π∗n,h

Pa (gn+h) (x). We will compare the re-
sulting finite horizon cost Jn+1,h(y, π̃n+1) at time n + 1,
where Jn+1,h(y, π̃n+1) =

n+h∑
k=n+1

P k−n+1
π̃n+1(1),...,,π̃n+1(k) (gk) (y) = Tn+1

π̃n+1(1) · · ·T
n+h
π̃n+1(h)(y),

with the optimal cost J∗n+1,h(y). By the principle of opti-
mality and after integrating appropriately withPa∗ , we have
Pa∗T

n+1
π̃n+1(1) · · ·T

n+h
π̃n+1(h)(x

′) ≥ Pa∗J
∗
n+1,h(x′). Hence the

following decomposition holds

n+h−1∑
k=n

P k−n+1
π∗n,h(1),...,π∗n,h(h)gk(x′)− Pa∗gn(x′) (14)

+Pa∗P
h
π̃n+1

gn+h(x′) ≥ Pa∗J∗n+1,h(x)

and if we substitute

J∗n,h(x) =

n+h−1∑
k=n

P k−n+1
π∗n,h(1),...,π∗n,h(h) (gk) (x′)

in (14) and then also integrate both sides with the law of the
path of the chain up to time n, Ln−1(x, x′) = Pn−1

a?1:n−1
(x, x′)

we get

Ln−1Pa∗ (gn) (x) ≤ Ln−1

(
J∗n,h − Pa∗

(
J∗n+1,h

))
(x)

+ Ln−1

(
Pa∗Pπ̃n+1

gn+h

)
(x).

We may omit the initial condition x without confusion and
consider the telescopic sum for every n:∑

n≥1

Ln−1Pa∗ (gn) ≤
∑
n≥1

Ln−1

(
J∗n,h − Pa∗

(
J∗n+1,h

))
(15)

+
∑
n≥1

Ln−1Pa∗Pπ̃n+1
(gn+h) .

For the lhs term we again identify
∑
n≥1 Ln−1Pa∗ (gn) =

J?n,h,∞(x) and for first term of the rhs we can use (13)
again to show it is finite. For the second sum of the rhs
of (15) we can show that the sum is converging within
the set defined by V (x) < ∞ by direct consequence
of drift condition (A2) and Assumption 4 ii) as follows:∑
n≥1 Ln−1Pa∗Pπ̃n+1

(gn+h) ≤
∑
n≥1 Ln−1δPa∗ (gn) ≤

V (x)δ
∑
n≥1 λ

nγn.
Remark 2: Note that it is trivial to show that in case were

h→∞ then equality holds and

lim
h→∞

∣∣J?1,h,∞(x)− J∗1,∞(x)
∣∣→ 0 (16)

Corollary 2: (cont. from Corollary 1) Let φ be the in-
variant measure of the chain. Also, for every x0 such that
|V (x0)| < ∞, under the policy πMPC we have Px(Xn /∈
K i.o.) = 0.



IV. RANDOMISED ALGORITHMS FOR ROLLING HORIZON
POLICIES

In this section we consider the case when a randomised
open loop policy is employed. We propose to use samples
obtained from stochastic optimisation algorithms as estimates
of the open loop optimisers π∗n,h(xn−1), where throughout
the section we will assume that Assumption 4 holds. In
this context, existing stochastic approximation algorithms
are able to provide ε-optimal solutions [4] with a desired
statistical confidence ρ [25], utilising a number of Monte
Carlo simulations which grows polynomially with ε−1 and
the desired ρ [19], [13], [14]. We will view these algorithms
as complex Markov transition kernels that can satisfy con-
ditions based on two alternative ε-optimality notions. In the
last part of this section we will comment on how this setting
applies for particular simulation based algorithms.

A. ε-optimality

At time n consider the augmented Markov kernel Πh
n :

X → P
(
Ah
)

which aims to generate samples that approx-
imate the minimiser of Jn,h(x, α) with α or αn denoting
an:n+h−1 generically in this section. Also define the ε-
optimality region at time n as

Bhn(ε) = {α ∈ A(x)h : Jn,h(x, α) ≤ J∗n,h(x) + ε},

We will assume that if α ∈ Bhn(ε) then a drift condition
similar to (A3) holds for its first element α(1):

Assumption 5: (A3)’ Assume the following drift condition
holds for the potential V such that for each n with α ∈
Bhn(ε),

Pα(1)V (x) ≤ λV (x) (17)

where λ ∈ (0, 1) and h is as in Assumption 4
We want generate samples π̃n,h ∼ Πh

n(x, ·) using simula-
tion based methods that satisfy some performance criteria
based on an imprecision εn with some desired statistical
confidence ρn > 0. In this sense we should be able to design
a sequence εn, ρn such that:

Πh
n(x,Bhn(εn)) = ρn.

Assumption 6: For every n ≥ 1 and x such that V (x) <
∞, let suppΠh

n(x, dα) = A(x)h and assume that
∑
n≥1 εn <

∞ and
∏
n≥1 ρn > 0.

For example the condition on εn, ρn can be fulfilled if εn
tends polynomially fast to zero and ρn exponentially fast to
one.

It seems we will consider the MPC policy to be an
arbitrary Markov transition kernel Πn : X → P (A),
which is generated as the marginal of the augmented pol-
icy Πh

n with respect to all actions apart the first one,
Πn = Πh

n

(∏n+h−1
k=n+1 Iak∈A(x)

)
. Then define the transition

kernel MDP’s state when randomised MPC is employed as
Pn(x, dx′) =

´
A(x)

Πn(x, da)Pa(x, dx′) and rewrite the j-
step MPC cost to go function at time n as

J̃n,h,j(x) =

n+j−1∑
k=n

P k−n+1
k (gk) (x). (18)

We will assume throughout that all the integrals with respect
to Πn,Π

h
n are well defined. As in the previous section we

will show the following proposition:
Proposition 2: If Assumptions (A1-2), (A3)’ , 4 and 6

hold, then for every n and x with |V (x)| <∞ we have:

J̃n,h,∞(x) <∞. (19)
Proof: Sketch of proof follows. Let κn(x) = J∗n,h(x)+

εn > 0. We have defined Bhn(εn) as the region where
Jn,h(x, α) ≤ IJn,h(x,α)≤κn(x)κn(x) holds, so by integration
we get

Πh
n(Jn,h)(x) ≤ ρnκn(x). (20)

Similarly if we use (A3)’ in the same way it was used to
construct (12) we can show Pα(1)Jn,h(x) ≤ C1

nJn,h(x) with
C1
n < 1 being a constant decreasing with n and hence we

get
Πh
nPα(1)(Jn,h)(x) ≤ C1

nρnκn(x). (21)

The remaining proof follows similar arguments to those in
the proof of Proposition 1. We split the proof in two parts
each using Assumption 4 i) and ii).
Part i): Consider the following decomposition:

Πh
n(Jn,h)(x′) = Pn(gn)(x′) + Πh

nPαn(1) (Jn+1,h−1) (x′)

≥ Pn(gn)(x′) + Πh
nPαn(1) (Jn+1,h) (x′)− bn+1.

(22)

By the same arguments as in Part i) of the proof of Proposi-
tion 1 we can derive the telescopic sum where x is omitted:

J̃n,h,j(x) ≤
∑
n≥1

Ln−1

(
Πh
n(Jn,h)−Πh

nPαn(1) (Jn+1,h)
)

+
∑
n≥1

bn+1,

where Ln is the appropriately modified law of the path of
the Markov chain. For the first term of the rhs we observe
that it is less than or equal to

∑
n≥1 C

2
n(1−C1

n)ρnκn(x) <
∞ when V (x) < ∞. For the sake of brevity we omit
intermediate steps.
Part ii) Using similar arguments as Part i) and Part ii) of the
proof of Proposition 1 we go directly to the inequality with
the telescopic sum

J̃n,h,j(x) ≤
∑
n≥1

Ln−1Πh
n

(
J∗n,h − Pαn(1)

(
J∗n+1,h

))
.

+
∑
n≥1

Ln−1Pαn(1)Π
h
n+1 (gn+h) .

The first term in the rhs can be treated in a similar fashion
as before. For the second term we may use repeatedly (A2)-
(A3)’ as in (20)-(21) to get the required result.
A more complete proof will be presented in future versions
of this paper.

Corollary 3: (cont. from Corollary 2) By adapting Lemma
1 appropriately it is possible to show that if the Markov chain
Xn starts at x0 with |V (x0)| < ∞ and evolves with the
transition kernel Pn, where Πn satisfies either Assumptions
6, then we have Px(Xn /∈ K i.o.) = 0.



B. Approximate domain optimality

In the second part of the section we will consider the fol-
lowing alternative probabilistic notion of ε-optimality based
on ideas from [25] and referred to as approximate domain
optimality in [13], [14]. First consider the region around α
defined as

Bhn(α, ε) = {α′ ∈ A(x)h : Jn,h(x, α′) < Jn,h(x, α)− ε}.

Then for some arbitrary finite measure µ consider the so
called approximate domain optimality region:

Rhn(ε, χ) = {α ∈ A(x)h : µ(Bhn(α, ε)) ≤ χµ(A(x)h)}.

In the same spirit as before we can specify εn, %n and χn
to design a kernel Πh

n satisfying

Πh
n(x,Rhn(εn, χn)) = %n

where %n > 0. We pose the following assumption:
Assumption 7: For every n and x such that V (x) <

∞ let suppΠh
n(x, dα) = A(x)h, assume that the Radon-

Nicodym derivative dΠh
n

dµ exists and for εn, %n, χn we have
that

∑∞
k=0 χk <∞,

∑
n≥1 εn <∞ and

∏
n≥1 %n > 0.

Conjecture 1: If Assumptions (A1-2), (A3)’, 4 and 7 hold,
then for every n and x with |V (x)| <∞ we have:

J̃n,h,∞(x) <∞. (23)
We will present the proof in future versions of the paper.
C. Existing algorithms satisfying Assumptions 6, 7

Efficient algorithms equipped with provable bounds, of the
type required by Assumptions 6, include stochastic program-
ming approaches [19] and [24], which were developed for
convex stochastic problems. The same type of guarantees
have been shown to hold for non-convex stochastic problems
in [13], [14] when Markov Chain Monte Carlo (MCMC) is
employed. In all these cases, given desired values of accuracy
ε and confidence ρ, an explicit bound on the required
number of Monte Carlo simulations can be obtained. Such a
bound is effectively a stopping criterion for the optimisation
algorithm. However, in order to compute such a bound one
requires knowledge of a bound for the Lipschitz constant of
the cost. If this is not available then similar guarantees can
be obtained for the weaker notion of approximate domain
optimality in Assumption 7 (for more details see [13], [14]).
In the latter case Lipschitz continuity is not required. It
is conjectured that the stability results of this section for
ε-optimality can be extended to the case of approximate
domain optimality. This is the object of current investigation.

V. CONCLUSIONS

We have developed an approach in which we do not adopt
a-priori a specific class of MDP. The cost considered is
required to obey a stochastic Lyapunov drift condition with
respect to the process transition kernel, but is otherwise
left flexible with respect to the controller’s design needs.
Under fairly weak assumptions the optimal MPC policy was
shown to exhibit some fairly general stability properties,
which were established using dynamic programming and the
Markovian nature of the system. In the last part of the paper

we considered using simulation based methods, which can
be employed for a wide class of models to obtain estimates
of the MPC optimisers. In our future work we plan show
examples of problems where our assumptions can be verified
together with some numerical comparisons.
Acknowledgements: The authors would like to thank Ellie
Siva and Tom Dean for valuable comments to improve the
presentation of the paper.

REFERENCES

[1] Alden J. M. and Smith R. L., Rolling Horizon Procedures in Nonho-
mogeneous Markov Decision Processes, Oper. Res., Vol. 40, Suppl.
2: Stochastic Processes, pp. S183-S194, 1992 .

[2] Bertsekas D. P., Dynamic Programming and Suboptimal Control: A
Survey from ADP to MPC, Eur. J. of Contr., Vol. 11, Nos. 4-5, 2005

[3] Bertsekas D. P., Dynamic Programming and Optimal Control, Volumes
1 and 2, Athena Scientific, 2001.

[4] Bertsekas D.P. and Shreve S.E., Stochastic Optimal Control: The
Discrete-Time Case, Athena Scientific, 1996.

[5] Cannon M., Kouvaritakis B. and Wu X., Model predictive control
for systems with stochastic multiplicative uncertainty and probabilistic
constraints, Automatica, 45, pp 167-172, 2009.

[6] Chatterjee D., Cinquemani E., Chaloulos G. and Lygeros J. Stochastic
control up to a hitting time: optimality and rolling-horizon implemen-
tation, arXiv:0806.3008v3 [math.OC], 2009.

[7] Feinberg E. A. and Shwartz A. Handbook of Markov Decision
Processes: Methods and Applications, Kluwer Int. Series, 2002.

[8] Hernandez-Lerma O. and J.B. Lasserre, Error bounds for rolling
horizon policies in general Markov control processes, IEEE Trans.
Auto. Contr. 35, pp 1118–1124, 1990.

[9] Hernandez-Lerma O. and J.B. Lasserre, Average cost optimal policies
for Markov control processes with Borel state space and unbounded
costs, Syst. Contr. Lett. 15, pp. 349–356, 1990.

[10] Hernandez-Lerma O. and J.B. Lasserre, Value Iteration and Rolling
Plans for Markov control processes with unbounded rewards, J. Math.
Anal. Appl. 177, pp. 38–55, 1993.

[11] Hopp W. J., Bean J. C., Smith R. L., A New Optimality Criterion for
Nonhomogeneous Markov Decision Processes, Oper. Res., Vol. 35,
No. 6, pp. 875-883, 1987.

[12] Maciejowski J.M., Predictive control with Constraints, Prentice Hall,
2002.

[13] Lecchini-Visintini A., Lygeros J. and Maciejowski J. M., Simulated
Annealing: Rigorous finite-time guarantees for optimization on con-
tinuous domains, In Advances NIPS 27, 2008.

[14] Lecchini-Visintini A., Lygeros J. and Maciejowski J. M., Stochastic
optimization on continuous domains with finite-time guarantees by
Markov chain Monte Carlo methods, IEEE Trans. Aut. Contr., to
appear.

[15] Meyn S., Stability, Performance evaluation and Optimisation, in [7].
[16] Meyn S. and Tweedie R.L., Markov Chains and Stochastic Stability,

Springer Verlag, 1993.
[17] Meyn S. and Tweedie R.L., Stability of Markovian processes I: criteria

for discrete Markov chains, Adv. Appl. Prob, 24, 542-574, 1992.
[18] Michalska H. and Mayne D. Q., Robust Receding Horizon Con-

trol of Constrained Nonlinear Systems, IEEE Trans. Aut. Contr.,
38(11):1623–1632, 1993.

[19] Nesterov Y. and Vial J. P., Confidence level solutions for stochastic
programming,Automatica, 44, Vol 6, pp 1559-1568, 2008.

[20] Primbs J.A. and Sung C.H., Stochastic Receding Horizon Control of
Constrained Linear Systems with state and control multiplicative noise,
IEEE Trans. Aut. Contr, 54(2), pp 221 - 230, 2009.

[21] Rawlings J.B. and Mayne D. Q., Model Predictive Control: Theory
and Design, Madison, Wisconsin: Nob Hill Publishing, 2009.

[22] Scokaert P. O. M., Mayne D. Q. and Rawlings J. B., Suboptimal
model predictive control (feasibility implies stability), IEEE Trans.
Aut. Contr, 44(3):648–654, 1999.

[23] Sethi S. and Sorger G., A theory of rolling horizon decision making,
Ann. Oper. Res. 29, 387-416, 1991.

[24] Shapiro, A., Stochastic programming approach to optimization under
uncertainty, Math. Program., Ser. B, 112,183-220, 2008.

[25] Vidyasagar M., Randomized algorithms for robust controller synthesis
using statistical learning theory, Automatica, Vol 37(10), pp 1515-
1528, 2001.


